organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(*E*)-1-Diphenylmethylidene-2-[(1*H*-indol-3-yl)methylidene]hydrazine

R. Archana,^a R. Anbazhagan,^b K. R. Sankaran,^b A. Thiruvalluvar^a* and R. J. Butcher^c

^aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamil Nadu, India, ^bDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India, and ^cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA

Correspondence e-mail: athiru@vsnl.net

Received 19 May 2010; accepted 31 May 2010

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.032; wR factor = 0.092; data-to-parameter ratio = 9.0.

In the title compound, $C_{22}H_{17}N_3$, the 1*H*-indole unit is essentially planar, with a dihedral angle of 0.95 (10)° between the pyrrole ring and the fused benzene ring. The dihedral angle between the two phenyl rings is 65.09 (10)°. In the crystal, an intermolecular N-H···N hydrogen bond forms an infinite chain in the *b*-axis direction.

Related literature

For the synthesis, see: Fleming & Harley-Mason (1961). For the crystal structures of some aromatic azines, for example, acetophenone azine, see: Glaser *et al.* (1995). For other heterocyclic aldehyde azines, see: Lin *et al.* (2001). For the crystal structure of symmetrical 1*H*-Indole-3-carbaldehyde azine, see: Rizal *et al.* (2008).

Experimental

Crystal data

 $\begin{array}{l} C_{22}H_{17}N_3 \\ M_r = 323.39 \\ Orthorhombic, Pna2_1 \\ a = 24.1594 \ (3) \ \text{\AA} \\ b = 13.8501 \ (2) \ \text{\AA} \\ c = 5.2173 \ (1) \ \text{\AA} \end{array}$

Data collection

Oxford Diffraction Xcalibur Ruby
Gemini diffractometer
Absorption correction: multi-scan
(CrysAlis PRO; Oxford
Diffraction, 2009)
$T_{\min} = 0.796, \ T_{\max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	H atoms treated by a mixture of
$wR(F^2) = 0.092$	independent and constrained
S = 1.06	refinement
2059 reflections	$\Delta \rho_{\rm max} = 0.12 \text{ e } \text{\AA}^{-3}$
230 parameters	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$
1 restraint	

V = 1745.76 (5) Å³

 $0.46 \times 0.21 \times 0.18 \; \rm mm$

8042 measured reflections 2059 independent reflections

1954 reflections with $I > 2\sigma(I)$

Cu Ka radiation

 $\mu = 0.58 \text{ mm}^{-1}$

T = 295 K

 $R_{\rm int}=0.015$

Z = 4

Table 1

	lydrogen-bond	geometry	(A, °).	
--	---------------	----------	---------	--

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$		
$N1 - H1 \cdots N2^{i}$	0.88 (3)	2.18 (2)	3.0069 (19)	159 (3)		
Symmetry code: (i) $-x + \frac{1}{2}, y + \frac{1}{2}, z - \frac{1}{2}$.						

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2009); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *PLATON* (Spek, 2009).

RJB acknowledges the NSF MRI program (grant CHE-0619278) for funds to purchase an X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2037).

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Fleming, I. & Harley-Mason, J. (1961). J. Chem. Soc. pp. 5560-5561.

Glaser, R., Chen, G. S., Anthamatten, M. & Barnes, C. L. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 1449–1458.

Lin, C.-J., Hwang, W.-S. & Chiang, M. J. (2001). J. Organomet. Chem. 640, 85– 92.

Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.

Rizal, M. R., Ali, H. M. & Ng, S. W. (2008). Acta Cryst. E64, 0555.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2010). E66, o1586 [doi:10.1107/S1600536810020702]

(E)-1-Diphenylmethylidene-2-[(1H-indol-3-yl)methylidene]hydrazine

R. Archana, R. Anbazhagan, K. R. Sankaran, A. Thiruvalluvar and R. J. Butcher

Comment

The title compound is an unsymmetrical indole azine derived from benzophenone, indole-3-carboxaldehyde and hydrazine. Glaser *et al.*, (1995) have reported the crystal structures of some aromatic azines. Lin *et al.*, (2001) have reported heterocyclic aldehyde azines. Rizal *et al.*, (2008) have reported the crystal structure of symmetrical 1*H*-Indole-3-carbaldehyde azine. Herein, we report the crystal structure of the title compound.

In the title molecule (Scheme I, Fig. 1), $C_{22}H_{17}N_3$, the 1*H*-indole unit is almost planar, as the pyrrole ring makes a dihedral angle of 0.95 (10)° with the fused benzene ring. The r.m.s. deviation of a mean plane fitted through all non hydrogen atoms of the indole unit is 0.0096 Å; C3 deviates from this plane by 0.015 (1) Å. The dihedral angle between the two phenyl rings of the diphenylmethylene residue is 65.09 (10)°. The crystal structure is stabilized by intermolecular N1—H1···N2(1/2 - *x*, 1/2 + *y*, -1/2 + *z*) hydrogen bond forming an infinite one-dimensional chain in the b-axis direction (Fig. 2).

Experimental

The compound was prepared in accord with literature precedents Fleming & Harley-Mason (1961). The mixture of benzophenone hydrazone (1.96 g, 0.01 mol) and indole-3-carboxaldehyde (2.55 g, 0.01 mol) in ethanol was refluxed for 2 h. The mixture was cooled to room temperature over night. The solid obtained was separated, dried and then recrystallized from absolute ethanol. The yield of isolated product was (1.76 g, 79%).

Refinement

Owing to the absence of any anamalous scatterers in the molecule, Friedel pairs were merged. The absolute structure in the model was chosen arbitrarily. The N-bound H1 atom was located in a difference Fourier map, and was freely refined. Remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å. $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.

(E)-1-Diphenylmethylidene-2-[(1H-indol-3-yl)methylidene]hydrazine

Crystal of	data
------------	------

C ₂₂ H ₁₇ N ₃	$D_{\rm x} = 1.230 {\rm ~Mg~m}^{-3}$
$M_r = 323.39$	Melting point: 423 K
Orthorhombic, Pna21	Cu K α radiation, $\lambda = 1.54184$ Å
Hall symbol: P 2c -2n	Cell parameters from 6053 reflections
a = 24.1594 (3) Å	$\theta = 4.9-77.4^{\circ}$
b = 13.8501 (2) Å	$\mu = 0.58 \text{ mm}^{-1}$
c = 5.2173 (1) Å	T = 295 K
$V = 1745.76 (5) \text{ Å}^3$	Needle, pale yellow
Z = 4	$0.46 \times 0.21 \times 0.18 \text{ mm}$
F(000) = 680	

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer	2059 independent reflections
Radiation source: Enhance (Cu) X-ray Source	1954 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.015$
Detector resolution: 10.5081 pixels mm ⁻¹	$\theta_{\text{max}} = 77.6^{\circ}, \ \theta_{\text{min}} = 4.9^{\circ}$
ω scans	$h = -30 \rightarrow 27$
Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Oxford Diffraction, 2009)	$k = -17 \rightarrow 17$
$T_{\min} = 0.796, T_{\max} = 1.000$	$l = -5 \rightarrow 6$
8042 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.032$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.092$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.06	$w = 1/[\sigma^2(F_0^2) + (0.0712P)^2 + 0.0189P]$ where $P = (F_0^2 + 2F_c^2)/3$
2059 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
230 parameters	$\Delta \rho_{max} = 0.12 \text{ e } \text{\AA}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.25795 (6)	0.62655 (10)	0.3007 (4)	0.0689 (4)
N2	0.15647 (5)	0.26575 (8)	0.6043 (3)	0.0551 (3)
N3	0.16478 (5)	0.36551 (8)	0.6361 (3)	0.0550 (4)
C1	0.20416 (6)	0.39405 (10)	0.4934 (4)	0.0582 (4)
C2	0.25644 (7)	0.52898 (11)	0.2923 (4)	0.0692 (5)
C3	0.21904 (6)	0.49427 (10)	0.4681 (4)	0.0578 (4)
C4	0.15783 (6)	0.59044 (12)	0.7935 (4)	0.0636 (5)
C5	0.14574 (8)	0.68387 (14)	0.8692 (5)	0.0778 (6)
C6	0.17085 (8)	0.76319 (13)	0.7519 (5)	0.0794 (7)
C7	0.20847 (8)	0.75255 (11)	0.5582 (5)	0.0711 (6)
C8	0.22152 (6)	0.65856 (11)	0.4834 (4)	0.0587 (4)
C9	0.19622 (5)	0.57731 (10)	0.5974 (3)	0.0540 (4)
C10	0.11010 (6)	0.23275 (9)	0.6904 (3)	0.0510 (3)
C11	0.09878 (6)	0.12935 (10)	0.6271 (3)	0.0576 (4)
C12	0.12405 (8)	0.08728 (13)	0.4155 (4)	0.0715 (6)
C13	0.11502 (10)	-0.00994 (14)	0.3603 (5)	0.0890 (8)
C14	0.08040 (10)	-0.06415 (13)	0.5133 (6)	0.0945 (9)
C15	0.05508 (10)	-0.02335 (13)	0.7208 (6)	0.0891 (8)

C16	0.06379 (8)	0.07414 (11)	0.7795 (5)	0.0710 (5)
C21	0.06955 (6)	0.28877 (10)	0.8444 (3)	0.0513 (4)
C22	0.01336 (6)	0.28961 (11)	0.7848 (4)	0.0609 (4)
C23	-0.02317 (7)	0.34404 (14)	0.9306 (5)	0.0728 (6)
C24	-0.00457 (8)	0.39643 (14)	1.1386 (4)	0.0735 (6)
C25	0.05106 (8)	0.39457 (13)	1.2010 (4)	0.0686 (5)
C26	0.08756 (6)	0.34155 (11)	1.0559 (3)	0.0593 (4)
H1	0.2797 (10)	0.6616 (17)	0.204 (6)	0.089 (7)*
H1A	0.22419	0.34832	0.40160	0.0698*
H2	0.27765	0.49087	0.18322	0.0830*
H4	0.14080	0.53787	0.87152	0.0764*
Н5	0.12039	0.69401	1.00059	0.0933*
H6	0.16173	0.82502	0.80720	0.0953*
H7	0.22468	0.80575	0.47948	0.0853*
H12	0.14699	0.12400	0.31071	0.0858*
H13	0.13237	-0.03826	0.22001	0.1067*
H14	0.07425	-0.12885	0.47504	0.1133*
H15	0.03194	-0.06049	0.82360	0.1069*
H16	0.04622	0.10185	0.92001	0.0852*
H22	0.00029	0.25361	0.64707	0.0731*
H23	-0.06054	0.34525	0.88781	0.0873*
H24	-0.02924	0.43266	1.23595	0.0882*
H25	0.06382	0.42930	1.34165	0.0823*
H26	0.12488	0.34091	1.09955	0.0711*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
N1	0.0668 (7)	0.0567 (7)	0.0833 (9)	-0.0144 (6)	0.0116 (8)	0.0021 (8)
N2	0.0562 (6)	0.0416 (5)	0.0675 (7)	0.0010 (4)	-0.0022 (6)	0.0012 (6)
N3	0.0535 (5)	0.0425 (5)	0.0689 (8)	-0.0018 (4)	0.0006 (5)	0.0014 (6)
C1	0.0501 (6)	0.0493 (6)	0.0751 (10)	0.0016 (5)	0.0050 (7)	-0.0012 (7)
C2	0.0642 (8)	0.0578 (8)	0.0856 (11)	-0.0070 (6)	0.0161 (9)	-0.0013 (9)
C3	0.0483 (6)	0.0514 (7)	0.0737 (9)	-0.0034 (5)	0.0032 (7)	0.0006 (7)
C4	0.0556 (7)	0.0622 (8)	0.0731 (10)	-0.0023 (6)	0.0038 (8)	-0.0011 (8)
C5	0.0673 (9)	0.0766 (10)	0.0894 (14)	0.0047 (8)	0.0079 (9)	-0.0178 (10)
C6	0.0784 (10)	0.0573 (8)	0.1025 (16)	0.0033 (7)	-0.0065 (11)	-0.0201 (10)
C7	0.0747 (9)	0.0509 (7)	0.0877 (12)	-0.0090 (7)	-0.0107 (10)	-0.0036 (8)
C8	0.0535 (6)	0.0529 (7)	0.0697 (9)	-0.0084 (5)	-0.0072 (7)	0.0002 (7)
C9	0.0445 (6)	0.0507 (6)	0.0668 (9)	-0.0037 (5)	-0.0064 (6)	-0.0003 (7)
C10	0.0535 (6)	0.0432 (5)	0.0562 (7)	-0.0007 (5)	-0.0090 (6)	0.0058 (6)
C11	0.0620 (7)	0.0449 (6)	0.0660 (8)	-0.0027 (5)	-0.0177 (7)	0.0019 (7)
C12	0.0800 (10)	0.0593 (8)	0.0752 (11)	0.0023 (7)	-0.0156 (9)	-0.0079 (8)
C13	0.1040 (14)	0.0647 (10)	0.0982 (16)	0.0089 (9)	-0.0288 (13)	-0.0240 (11)
C14	0.1079 (15)	0.0465 (8)	0.129 (2)	-0.0049 (9)	-0.0440 (16)	-0.0108 (11)
C15	0.1001 (14)	0.0516 (9)	0.1155 (19)	-0.0200 (9)	-0.0224 (13)	0.0108 (11)
C16	0.0786 (10)	0.0512 (7)	0.0833 (11)	-0.0120 (7)	-0.0120 (10)	0.0077 (8)
C21	0.0551 (7)	0.0453 (6)	0.0535 (7)	-0.0041 (5)	-0.0037 (6)	0.0089 (5)

C22	0.0557 (7)	0.0612 (7)	0.0658 (8)	-0.0039 (6)	-0.0070 (7)	0.0032 (8)
C23	0.0559 (7)	0.0787 (10)	0.0837 (12)	0.0040 (7)	-0.0001 (9)	0.0088 (10)
C24	0.0738 (10)	0.0731 (9)	0.0737 (11)	0.0080 (8)	0.0134 (9)	0.0029 (9)
C25	0.0808 (10)	0.0693 (9)	0.0557 (8)	-0.0044 (8)	0.0030 (8)	-0.0016 (8)
C26	0.0596 (7)	0.0627 (8)	0.0556 (7)	-0.0049 (6)	-0.0055 (6)	0.0036 (7)
Geometric param	neters (Å, °)					
N1—C2		1.353 (2)	C21—0	C26		1.393 (2)
N1—C8		1.371 (3)	C21—0	C22		1.393 (2)
N2—N3		1.4060 (16)	C22—C23			1.388 (3)
N2—C10		1.2906 (19)	C23—0	C24		1.381 (3)
N3—C1		1.271 (2)	C24—0	C25	1.383 (3)	
N1—H1		0.88 (3)	C25—0	226		1.375 (2)
C1—C3		1.440 (2)	С1—Н	1A		0.9300
C2—C3		1.374 (3)	С2—Н	2		0.9300
C3—C9		1.443 (2)	С4—Н	4		0.9300
C4—C5		1.384 (3)	С5—Н	5		0.9300
C4—C9		1.393 (2)	С6—Н	6		0.9300
C5—C6		1.396 (3)	С/—Н	7		0.9300
C6—C7		1.367 (3)	C12—1	H12		0.9300
C/=C8		1.395 (2)	C13—1	H13		0.9300
$C_{8} - C_{9}$		1.412(2) 1.486(2)	C14—H14			0.9300
C10-C11		1.400(2) 1.4049(19)	C15—1	H16		0.9300
C10—C11		1.4949(19) 1 390(3)	C10—1	H10 H22		0.9300
C11 - C12		1.390 (3)	C22—I	H23		0.9300
C12-C13		1.394 (3)	C24—1	H24		0.9300
C13—C14		1.379 (3)	C25—I	H25		0.9300
C14—C15		1.366 (4)	C26—H26			0.9300
C15—C16		1.400 (2)				
$N1 \cdots N2^{i}$		3.0069 (19)	C12…H	I2 ⁱⁱ		3.0600
N2…N1 ⁱⁱ		3.0069 (19)	C13…H	I2 ⁱⁱ		3.0900
N3…C4		3.226 (2)	C14…H	C14····H6 ^v		2.9300
N3…C26		2.896 (2)	C16…H	С16…Н22		3.0000
N2…H26 ⁱⁱⁱ		2.9300	C21…H	116		2.6800
N2…H1 ⁱⁱ	···H1 ⁱⁱ 2.18 (2)		C22…H16			2.8100
N2…H26	2.8900		H1…N2 ⁱ			2.18 (2)
N2…H12	H12 2.5000		H1…C10 ⁱ			2.84 (2)
N3…H4		2.7500	H1···C11 ⁱ			3.00 (2)
N3…H26	2.6300		H1···C12 ⁱ			2.96 (3)
$C2 \cdots C12^{i}$		3.585 (3)	H1A…(C6 ^{viii}		2.9000
C4…N3		3.226 (2)	H1A…(C7 ^{viii}		2.7600
C6…C14 ^{iv}		3.470 (3)	H1A…]	H7 ^{viii}		2.5900
C12···C2 ⁱⁱ		3.585 (3)	Н2…С1	12 ⁱ		3.0600
C13···C16 ⁱⁱⁱ	13…C16 ⁱⁱⁱ 3.474 (4)		H2···C13 ⁱ			3.0900

C14…C6 ^v	3.470 (3)	H4…N3	2.7500
C16…C22	3.224 (2)	H5···H23 ^{ix}	2.5400
C16···C13 ^{vi}	3.474 (4)	H6…C14 ^{iv}	2.9300
C22…C25 ⁱⁱⁱ	3.496 (3)	H7…H1A ^{vii}	2.5900
C22···C16	3.224 (2)	H12…N2	2.5000
C25···C22 ^{vi}	3.496 (3)	H16…C21	2.6800
C26…N3	2.896 (2)	H16…C22	2.8100
C1···H26 ⁱⁱⁱ	2.9000	H22…C11	2.9400
C6…H1A ^{vii}	2.9000	H22…C16	3.0000
C7…H1A ^{vii}	2.7600	H23…H5 ^x	2.5400
C10…H1 ⁱⁱ	2.84 (2)	H26…N2	2.8900
С11…Н22	2.9400	H26…N2 ^{vi}	2.9300
C11…H1 ⁱⁱ	3.00 (2)	H26…N3	2.6300
C12····H1 ⁱⁱ	2.96 (3)	H26…C1 ^{vi}	2.9000
$C_{2} = N_{1} = C_{8}$	109 17 (15)	$C^{23} - C^{24} - C^{25}$	110 11 (18)
$N_{2} = N_{1} = C_{0}$	109.17(13) 115.52(12)	$C_{23} = C_{24} = C_{25}$	120 24 (18)
N2N3C1	110.08 (13)	$C_{24} = C_{25} = C_{20}$	120.24 (10)
$C_2 = N_1 = H_1$	123 5 (16)	N3-C1-H1A	119.00
C8_N1_H1	123.3(10) 127.4(17)	$C_3 - C_1 - H_1 \Delta$	119.00
$N_3 - C_1 - C_3$	127.1(17) 122.71(15)	N1-C2-H2	125.00
N1 - C2 - C3	110 22 (16)	C_{3} C_{2} H_{2}	125.00
11 - 22 - 23	110.22(10) 124.23(16)	$C_5 = C_2 = H_2$	123.00
$C_1 = C_3 = C_2$	124.23(10) 106.52(13)	C_{3} C_{4} H_{4}	121.00
$C_2 = C_3 = C_3$	100.52(15) 120.06(15)	$C_{9} = C_{4} = 114$	121.00
$C_{1} = C_{3} = C_{9}$	129.00 (13)		119.00
$C_3 = C_4 = C_9$	118.18 (10)	C6-C5-H5	119.00
C4 - C5 - C6	121.3(2)	С5—С6—Н6	119.00
C5-C6-C7	121.87 (18)	С/—Сб—Нб	119.00
$C_{6} - C_{7} - C_{8}$	11/.23 (1/)	C6—C/—H/	121.00
C7—C8—C9	121.87 (17)	С8—С7—Н7	121.00
NI	129.89 (17)	С11—С12—Н12	120.00
N1—C8—C9	108.24 (13)	C13—C12—H12	120.00
C4—C9—C8	119.58 (14)	C12—C13—H13	120.00
C3—C9—C4	134.58 (14)	C14—C13—H13	120.00
C3—C9—C8	105.84 (13)	C13—C14—H14	120.00
N2-C10-C11	114.91 (13)	C15—C14—H14	120.00
N2-C10-C21	125.15 (12)	C14—C15—H15	120.00
C11-C10-C21	119.94 (12)	C16—C15—H15	120.00
C10-C11-C12	119.79 (14)	C11-C16-H16	120.00
C12-C11-C16	119.41 (15)	C15—C16—H16	120.00
C10-C11-C16	120.80 (15)	C21—C22—H22	120.00
C11—C12—C13	120.02 (18)	С23—С22—Н22	120.00
C12—C13—C14	120.1 (2)	С22—С23—Н23	120.00
C13—C14—C15	120.36 (19)	C24—C23—H23	120.00
C14—C15—C16	120.3 (2)	C23—C24—H24	120.00
C11—C16—C15	119.8 (2)	C25—C24—H24	120.00
C10—C21—C22	121.76 (14)	C24—C25—H25	120.00

C22—C21—C26	118.48 (14)	С26—С25—Н25	120.00
C10—C21—C26	119.76 (13)	C21—C26—H26	119.00
C21—C22—C23	120.14 (17)	С25—С26—Н26	119.00
C22—C23—C24	120.62 (17)		
C8—N1—C2—C3	0.1 (2)	C7—C8—C9—C4	-1.2 (3)
C2—N1—C8—C7	-179.2 (2)	N2-C10-C11-C12	-24.1 (2)
C2—N1—C8—C9	0.6 (2)	N2-C10-C11-C16	155.04 (17)
C10-N2-N3-C1	-164.25 (15)	C21-C10-C11-C12	156.63 (16)
N3—N2—C10—C11	172.86 (13)	C21—C10—C11—C16	-24.3 (2)
N3—N2—C10—C21	-7.9 (2)	N2-C10-C21-C22	131.69 (18)
N2—N3—C1—C3	174.46 (16)	N2-C10-C21-C26	-48.9 (2)
N3—C1—C3—C2	-171.37 (18)	C11—C10—C21—C22	-49.1 (2)
N3—C1—C3—C9	3.0 (3)	C11-C10-C21-C26	130.34 (15)
N1—C2—C3—C1	174.67 (17)	C10-C11-C12-C13	177.96 (18)
N1—C2—C3—C9	-0.8 (2)	C16-C11-C12-C13	-1.2 (3)
C1—C3—C9—C4	6.0 (3)	C10-C11-C16-C15	-178.12 (19)
C1—C3—C9—C8	-174.06 (18)	C12-C11-C16-C15	1.0 (3)
C2—C3—C9—C4	-178.90 (18)	C11-C12-C13-C14	0.9 (3)
C2—C3—C9—C8	1.10 (19)	C12-C13-C14-C15	-0.5 (4)
C9—C4—C5—C6	0.5 (3)	C13-C14-C15-C16	0.4 (4)
C5—C4—C9—C3	-179.81 (19)	C14—C15—C16—C11	-0.6 (4)
C5—C4—C9—C8	0.2 (2)	C10-C21-C22-C23	-178.96 (16)
C4—C5—C6—C7	-0.2 (4)	C26—C21—C22—C23	1.6 (2)
C5—C6—C7—C8	-0.8 (3)	C10-C21-C26-C25	179.57 (15)
C6—C7—C8—N1	-178.7 (2)	C22—C21—C26—C25	-1.0 (2)
C6—C7—C8—C9	1.5 (3)	C21—C22—C23—C24	-1.2 (3)
N1—C8—C9—C3	-1.04 (19)	C22—C23—C24—C25	0.2 (3)
N1—C8—C9—C4	178.96 (15)	C23—C24—C25—C26	0.5 (3)
С7—С8—С9—С3	178.80 (18)	C24—C25—C26—C21	-0.1 (3)

Symmetry codes: (i) -*x*+1/2, *y*+1/2, *z*-1/2; (ii) -*x*+1/2, *y*-1/2, *z*+1/2; (iii) *x*, *y*, *z*-1; (iv) *x*, *y*+1, *z*; (v) *x*, *y*-1, *z*; (vi) *x*, *y*, *z*+1; (vii) -*x*+1/2, *y*+1/2, *z*+1/2; (viii) -*x*+1/2, *y*+1/2, *z*+1/2; (ix) -*x*, -*y*+1, *z*+1/2; (x) -*x*, -*y*+1, *z*-1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$
N1—H1···N2 ⁱ	0.88 (3)	2.18 (2)	3.0069 (19)	159 (3)
Symmetry codes: (i) $-x+1/2$, $y+1/2$, $z-1/2$.				

Fig. 1

Fig. 2